

Serving European Science

The European Fusion Development Agreement

and its JET experiment explore the potential of fusion as an energy source

Preparing for ITER

ITER now being constructed, due to operate in 2020 ITER aims to produce 10x more power than input

EIROforum Assembly

15 November 2012

JET: On the path to ITER

The ITER design is based largely on the success of JET

ITER

- U	

Machine diameter	6 m	12 m
Plasma volume	80 m ³	800 m ³
Fusion power	~16 MW _{thermal}	~500 MW _{thermal}
Fusion power / Input power	Q<1	Q=10

ITER Operation will be optimally prepared with JET

EFJET Developing ITER scenarios

Only JET has ITER-like wall

Tungsten divertor and Beryllium wall for ITER

1.To maximise operational space2.To reduce tritium retentioncompared to Carbon wall

Never been tested until now in JET

ILW = 2880 installable items, 15828 tiles (~2 tonnes Beryllium, ~2 tonnes Tungsten)

Measured fuel retention is more than 10x lower with the ILW, consistent with predictions made before installation

Dealing with the heat loads

The bulk tungsten divertor is designed for a maximum local temperature of the plasma-facing tungsten of 2200°C and a maximal energy deposition of 60 MJ/m²

Routine operation performed at 30MJ/m² and T_{surf} up to 1000°C

Divertor tested up to $48MJ/m^2$ and $T_{surf} \sim 1200^{\circ}C$

Edge Localised Mode pacing

Increasing frequency of Edge Instabilities reduces core accumulation of tungsten and improves performance

Energetic particles affect plasma instabilities They can be tailored to reduce tungsten peaking

Energetic Particles in Plasmas

New physics in presence of energetic ions (α 's in reactor)

- Particles at V~V_A exchange energy with wave:
 - Particles drive instabilities
 - Result in redistribution of current and result in loss of heating power

EIROforum Assembly

Challenges and Opportunities for JET

JET has demonstrated that Tritium-retention is in line with ITER needs

Working to demonstrate high confinement in ITER scenarios with ITER-like wall

Longer term opportunity to demonstrate control closer to ITER burning plasma conditions

Ian Chapman

6/13

EIROforum Assembly

15 November 2012